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A necessary condition for c-Wilf equivalence

Tim Dwyer and Sergi Elizalde∗

Department of Mathematics, Dartmouth College, Hanover, NH, USA

Abstract. Two permutations π and τ are strongly c-Wilf equivalent if, for each n and k,
the number of permutations in Sn containing k occurrences of π as a consecutive
pattern (i.e., in adjacent positions) is the same as for τ. If the condition holds for any
set of prescribed positions for the k occurrences, we say that π and τ are super-strongly
c-Wilf equivalent, and if it holds for k = 0, we say that π and τ are c-Wilf equivalent.

We give a necessary condition for two permutations to be strongly c-Wilf equivalent.
Specifically, we show that if π, τ ∈ Sm are strongly c-Wilf equivalent, then |πm−π1| =
|τm − τ1|. In the special case of non-overlapping permutations π and τ, this proves
a weaker version of a conjecture of the second author stating that π and τ are c-Wilf
equivalent if and only if π1 = τ1 and πm = τm, up to trivial symmetries. Additionally,
we show that for non-overlapping permutations, c-Wilf equivalence coincides with
super-strong c-Wilf equivalence, and we strengthen a recent result of Nakamura and
Khoroshkin–Shapiro giving sufficient conditions for strong c-Wilf equivalence.
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1 Introduction and definitions

The study of permutation patterns dates back at least to Knuth [10]. The last three
decades have seen an explosion of research in this area, and a number of questions
have arisen involving different types of patterns in permutations, including consecutive,
vincular, bivincular, mesh and barred patterns. A common question in all of these settings
is, for a given pattern π of length m, how many permutations σ of length n avoid this
pattern. This is a very difficult question in general. Another related question is when
two patterns have the same number of permutations of length n avoiding them, for all
n. In the classical case, two patterns with this property are said to be Wilf equivalent.
The classification of patterns into Wilf equivalence classes is a wide open problem.

In this paper we focus on the analogous question for consecutive patterns, that is, pat-
terns that occur in adjacent positions of the permutation. In this case, the notion analo-
gous to Wilf equivalence is called c-Wilf equivalence, following the terminology from [11].
Even though the classification of patterns into c-Wilf equivalence classes is also open, we
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are able to give a natural necessary condition in the case of non-overlapping patterns.
We also investigate the related notions of strong and super-strong c-Wilf equivalence.

Consecutive patterns appear naturally when defining permutation statistics such as
descents, peaks, valleys and runs, and also when defining alternating permutations. The
systematic enumeration of permutations avoiding consecutive patterns started in [6],
and it is now an active area of research (see the survey [5]).

Let Sn be the symmetric group on [n]. For σ ∈ Sn, we write σ = σ1σ2 . . . σn and let
|σ| = n denote its length. Given two permutations π ∈ Sm and σ ∈ Sn, we say that σ

contains π as a consecutive pattern if there is an i ∈ [n−m+ 1] for which st(σi . . . σi+m−1) =
π, where st is the standardization operation that replaces the smallest entry with a 1, the
next smallest with a 2 and so on. The substring σi . . . σi+m−1, identified by the position
i where it begins, is called an occurrence or an embedding of π in σ. For example the
permutation σ = 43815672 contains the pattern 51234 at position 3, since st(81567) =
51234. Define Em(π, σ) to be the set of occurrences (more specifically, the set of positions
where these occurrences begin) of π in σ, and let |Em(π, σ)| = em(π, σ). For example
Em(21, 345261) = {3, 5} and em(21, 345261) = 2 are just the descent set and descent
number of 345261.

To count occurrences of a consecutive pattern π in permutations, we use the expo-
nential generating function

Pπ(u, z) = ∑
σ

z|σ|

|σ|! uem(π,σ),

where the sum is taken of all permutations σ ∈ ⋃
n≥0 Sn. The coefficient of znuk in

Pπ(u, z) is aπ
n,k/n!, where aπ

n,k is the number of permutations σ ∈ Sn with em(π, σ) = k.
For a few specific patterns π, an explicit formula is known for this generating function.
For example, it was shown by Elizalde and Noy [6] that, for π ∈ Sm with π1 = 1, πm = 2
and m ≥ 3,

Pπ(u, z) =
1

1−
∫ z

0 e
(u−1)tm−1
(m−1)! dt

.

However, finding expressions for Pπ(u, z) in general is a difficult problem.
Instead, in this extended abstract we focus on some natural equivalence relations that

arise from the definition of consecutive patterns. Two permutations π and τ are called
strongly c-Wilf equivalent if Pπ(u, z) = Pτ(u, z), and they are called c-Wilf equivalent if
Pπ(0, z) = Pτ(0, z). Note that Pπ(0, z) is the generating function for permutations which
avoid π. It was conjectured by Nakamura [11] that these relations are actually the same:

Conjecture 1 ([11, Conjecture 5.6]). For permutations π and τ, we have Pπ(u, z) = Pτ(u, z)
if and only if Pπ(0, z) = Pτ(0, z).
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For π ∈ Sm, its overlap setOπ is the set of indices i ∈ [m− 1] such that st(πi+1 · · ·πm) =
st(π1 · · ·πm−i). The overlap set keeps track of which suffixes and prefixes of π have the
same standardization. Note that we always have m− 1 ∈ Oπ. The non-overlapping per-
mutations are those for which Oπ = {m − 1}. Conjecture 1 was proved in [7] in the
special case of non-overlapping permutations.

There is a nice sufficient condition for strong c-Wilf equivalence of two permutations
with the same overlap set, proved independently by Nakamura [11] and Khoroshkin and
Shapiro [9]:

Theorem 1 ([11, 9]). If π, τ ∈ Sm with Oπ = Oτ satisfy {π1, . . . , πm−i} = {τ1, . . . , τm−i}
and {πi+1 . . . , πm} = {τi+1, . . . , τm} for all i ∈ Oπ, then π and τ are strongly c-Wilf equiva-
lent.

For the case of non-overlapping permutations, Theorem 1 simply says that if π1 = τ1
and πm = τm, then π and τ are strongly c-Wilf equivalent. This fact had been already
shown in [2, 3, 4]. It was conjectured in [4] that, for non-overlapping patterns, this
condition completely characterizes c-Wilf equivalence. To be precise, first we note that
every permutation τ ∈ Sm is c-Wilf equivalent to its reversal, complement and reverse-
complement, defined as τR = τm · · · τ1, τC = (m + 1− τ1) · · · (m + 1− τm) and τRC =
(m + 1− τm) · · · (m + 1− τ1), respectively. It is easy to see that there is precisely one
permutation π ∈ {τ, τR, τC, τRC} satisfying π1 < πm and π1 + πm ≤ m + 1. Such a π is
said to be in standard form. Now we can formulate the conjecture precisely. We state it as
a necessary condition, since it is already known to be sufficient.

Conjecture 2 ([4]). Let π, τ ∈ Sm be non-overlapping and in standard form. If they are c-Wilf
equivalent, then π1 = τ1 and πm = τm.

Even though Conjecture 2 applies only to non-overlapping patterns, we can formulate
a related conjecture without this restriction. As mentioned above, for non-overlapping
patterns, c-Wilf equivalence is the same as strong c-Wilf equivalence, so the following
conjecture includes Conjecture 2 as a special case.

Conjecture 3. Let π, τ ∈ Sm be in standard form. If they are strongly c-Wilf equivalent, then
π1 = τ1 and πm = τm.

We prove in Section 3 that if the conjecture about non-overlapping patterns holds,
then so does the general conjecture:

Theorem 2. Conjecture 2 implies Conjecture 3.

One of our main results, which we also prove in Section 3, is the following weaker
version of Conjecture 3:

Theorem 3. Let π, τ ∈ Sm be in standard form. If they are strongly c-Wilf equivalent, then
πm − π1 = τm − τ1.
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In Section 4 we define a third equivalence relation on permutations that refines
strong c-Wilf equivalence. Define aπ

n,S to be the number of permutations σ ∈ Sn with
Em(π, σ) = S. Two permutations π, τ ∈ Sm are called super-strongly c-Wilf equivalent
if aπ

n,S = aτ
n,S for all n and S. Our Theorem 5 generalizes Theorem 1 to super-strong

equivalence. It is obtained by first extending the ideas from cluster method in order to
keep track of not only of the number of occurrences but also of their positions, as stated
in Lemma 2. Finally, in Theorem 6 we show that, for non-overlapping patterns, c-Wilf
equivalence implies super-strong c-Wilf equivalence.

2 The cluster method

The cluster method was introduced in the context of words by Goulden and Jackson [8]
to give a a combinatorial interpretation of the reciprocal of the generating function of
words over an alphabet refined by occurrences of specific substrings. Nakamura [11]
adapted it to consecutive permutation patterns. Given a pattern π, rather than counting
permutations σ with em(π, σ) = k, one counts ordered pairs (σ, S) with |S| = k and
S ⊆ Em(π, σ). We call such an ordered pair a a marked permutation, since the occurrences
of π in positions in S are marked. We represent marked occurrences by underlining
them in σ. For example, for π = 321, the marked permutation (432179865, {1, 2, 7}) can
be represented as 432179865.

The cluster method expresses Pπ(u, z) in terms of the generating function for a special
type of marked permutations called clusters. Given π ∈ Sm, a marked permutation
(σ, S) is a π-cluster if σ ∈ Sn, and S = {i1 < · · · < ik} ⊆ Em(π, σ) satisfies the following
conditions:

• 1, n−m + 1 ∈ S,

• ij+1 − ij ∈ Oπ for all j ∈ [k− 1].

In other words, both σ1 and σn belong to a marked occurrence, and each marked occur-
rence overlaps the next one. The previous example of a marked permutation is not a
321-cluster, but both 4321 and 54321 are. Define the cluster generating function

Rπ(u, z) = ∑
(σ,S)

z|σ|

|σ|! u|S|,

where the sum is taken over all π-clusters (σ, S). The coefficient of znuk in Rπ(u, z) is
rπ

n,k/n!, where rπ
n,k is the number of π-clusters (σ, S) where σ ∈ Sn and |S| = k. The

numbers rπ
n,k are called the cluster numbers of π.

A marked permutation can be identified with a sequence consisting of unmarked
entries interspersed with strings of overlapping marked occurrences that would be clus-
ters if the underlying word was standardized. For example, the marked permutation
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432179865 corresponds to the sequence (4321, 7, 9, 865). This identification provides the
desired connection between our generating functions.

Theorem 4 ([8, 11]). For any permutation π, we have

Pπ(u, z) =
1

1− z− Rπ(u− 1, z)
.

It follows immediately that Pπ(u, z) = Pτ(u, z) if and only if rπ
n,k = rτ

n,k for all n and k.

2.1 Cluster posets

Elizalde and Noy [7] established a connection between cluster numbers and linear ex-
tensions of posets. Fix π ∈ Sm. We can write

rπ
n,k = ∑

S
∑
σ

1,

where the exterior sum is taken over all sets S ⊆ [n−m + 1] with |S| = k satisfying the
two conditions in the definition of a cluster, and the interior sum is over all σ ∈ Sn for
which S ⊆ Em(π, σ). The value of the interior sum is denoted by rπ

n,S and called a refined
cluster number. We can now write rπ

n,k = ∑S rπ
n,S.

For each n and S as above, we define a poset Pπ
n,S on the set {σ1, . . . , σn} generated

by the order relationships forced by the fact that σ1 . . . σn must have occurrences of π

at each i ∈ S. We call Pπ
n,S a cluster poset, and we note that, by definition, it has exactly

rπ
n,S linear extensions. By way of example, suppose that π = 513624, S = {1, 4, 7} and

n = 12. Then rπ
12,S is the number of permutations σ ∈ S12 satisfying

st(σ1σ2σ3σ4σ5σ6) = st(σ4σ5σ6σ7σ8σ9) = st(σ7σ8σ9σ10σ11σ12) = 513624. (2.1)

Noting that π−1 = 253614, Equation (2.1) is equivalent to the following 3 chains of
inequalities:

σ2 < σ5 < σ3 < σ6 < σ1 < σ4,
σ5 < σ8 < σ6 < σ9 < σ4 < σ7,
σ8 < σ11 < σ9 < σ12 < σ7 < σ10.

The cluster poset Pπ
12,S is defined by the transitive closure of these relations, and its Hasse

diagram is given in Figure 1. Note that this poset is well-defined because all the symbols
which appear in multiple chains have the same ordering in each chain.

For the explicit definition of Pπ
n,S in general, define η = π−1 and take the transitive

closure of the k chains of inequalities on the set {σ1, . . . , σn} obtained for each i ∈ S:

σi−1+η1 < σi−1+η2 < · · · < σi−1+ηm .
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Figure 1: The Hasse diagram of P513624
12,{1,4,7}.

2.2 Posets for non-overlapping permutations

The cluster posets of non-overlapping permutations have a particularly simple structure.
First, note that if π ∈ Sm is non-overlapping, then rπ

n,k = 0 unless n = 1+ k(m− 1). This
is because in order to have k occurrences of π form a cluster, each one must overlap the
next one on exactly one letter, and so each occurrence of π after the first adds m − 1
new letters. Additionally, rπ

n,S = 0 unless S = {1, m, . . . , 1 + (k − 1)(m − 1)}, where
n = 1 + k(m − 1). We denote this set by S(k, m). This second fact is actually true for
every π ∈ Sm, regardless of whether or not it is non-overlapping: if |S| = k, then
rπ

1+k(m−1),S = 0 unless S = S(k, m).
Suppose that π ∈ Sm is in standard form and that π1 = a and πm = b. Then the

poset Pπ
1+k(m−1),S(k,m) consists of one long chain C with b + (k− 2)(b− a) + m− a nodes,

together with k− 1 additional chains D1, . . . , Dk−1 with m− b + a nodes. The chains Di
are disjoint, and each of them intersects C at one node, which is the a-th smallest element
of Di and the (b + (i− 1)(b− a))-th smallest element of D. The Hasse diagrams of the
posets Pπ

22,{1,8,15}, Pπ
29,{1,8,15,22}, Pπ

36,{1,8,15,22,29} for π = 34671285 are shown in Figure 2. A
more general drawing of the Hasse diagram of Pπ

4,S(4,m) for arbitrary π ∈ Sm in standard
form is given in Figure 3, where the k− 1 chains D1, . . . , Dk−1 are drawn diagonally and
the chain C is drawn vertically. It follows from the above description that Pπ

1+k(m−1),S(k,m)

depends only on π1 and πm, a key fact in the proof of Theorem 2. Additionally, this
description of the cluster posets Pπ

1+k(m−1),S(k,m) will be useful when proving Lemma 1
and then Theorem 3 in the next section.

3 Proofs of Theorems 2 and 3

Having characterized cluster posets for non-overlapping permutations, we are now able
to prove Theorem 2.
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Pπ
22,{1,8,15} Pπ

29,{1,8,15,22} Pπ
36,{1,8,15,22,29}

Figure 2: Some cluster posets for the non-overlapping permutation π = 34671285.

Proof of Theorem 2. It is easy to check that Conjecture 3 holds for m ≤ 4. Indeed, for
m = 3 there are only two permutations in standard form, namely 123 and 132, and they
are not c-Wilf equivalent. For m = 4, there are 8 permutations in S4 in standard form,
namely 1234, 1243, 1324, 1342, 1423, 1432, 2143, and 2413, and the only two that are
c-Wilf equivalent are 1342 and 1432 [6], which have the same first and last letter.

Now suppose that m ≥ 5 and π, τ ∈ Sm are in standard form and strongly c-Wilf
equivalent. By Theorem 4, we know that rπ

n,k = rτ
n,k for all n and k. In particular, taking

n = 1 + k(m − 1), we have rπ
1+k(m−1),k = rτ

1+k(m−1),k for all k. If πm = m, then the
condition π1 + πm ≤ m + 1 forces π1 = 1, and so rπ

1+k(m−1),k = 1 = rτ
1+k(m−1),k for all

k ≥ 1. But this can only happen if Pτ
1+k(m−1),S(k,m) is a chain, which forces τ1 = 1 and

τm = m as well. A symmetric argument shows that if τm = m, then π1 = τ1 = 1 and
πm = τm = m.

We are left with the case πm, τm < m. In this case, we construct two non-overlapping
permutations p, t ∈ Sm with the same first and last letters as π and τ, respectively,
following a construction from [4]:

p = π1(π1 + 1) . . . (πm − 1)(πm + 1) . . . (m− 1)12 . . . (π1 − 1)mπm,
t = τ1(τ1 + 1) . . . (τm − 1)(τm + 1) . . . (m− 1)12 . . . (τ1 − 1)mτm.

As discussed in Section 2.2, the poset Pπ
1+k(m−1),S(k,m) depends only on π1 and πm. It

follows that rπ
1+k(m−1),k = rp

1+k(m−1),k and rτ
1+k(m−1),k = rt

1+k(m−1),k for all k. Since p and t
are non-overlapping, these are their only non-zero cluster numbers, and so p and t are
c-Wilf equivalent. Now Conjecture 2 states that p and t must have the same first and last
letter, and thus the same holds for π and τ, implying Conjecture 3.
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a− 1

a− 1

a− 1

m− b

m− b

m− b

b− a− 1

b− a− 1

m− a

b− 1

Figure 3: The cluster poset Pπ
1+4(m−1),S(4,m) of a permutation π ∈ Sm in standard form

with π1 = a and πm = b.

Next we focus our attention on Theorem 3. The proof is based on the following result,
which allows us to extract information about the quantity πm − π1 from the sequence
rπ

1+k(m−1),S(k,m).

Lemma 1. Let π ∈ Sm be in standard form. Then there exist positive constants Lπ, Uπ and K
such that for all k ≥ K,

Lπ km−πm+π1−1 ≤
(

rπ
1+k(m−1),k

)1/k
≤ Uπ km−πm+π1−1.

Proof. First we note that if we have two posets R and Q on the same set X with order
relations ≤R and ≤Q such that x ≤R y implies x ≤Q y for all x, y ∈ X, then R has at least
as many linear extensions as Q. We obtain upper and lower bounds for rπ

1+k(m−1),S(k,m)

by removing and adding relations to Pπ
1+k(m−1),S(k,m) and counting the number of linear

extensions of the resulting modified posets. We use the same notation introduced in
the second paragraph of Section 2.2 throughout the proof and recall that rπ

1+k(m−1),k =

rπ
1+k(m−1),S(k,m). It is helpful to refer to Figure 3 and to think of the constructions of the

posets below as adding (or removing) relations between the rectangles themselves.
We will build two new posets Uπ

k and Lπ
k with `π

k and uπ
k linear extensions, re-

spectively, such that `π
k ≤ rπ

1+k(m−1),S(k,m) ≤ uπ
k . Then we will show that, as k → ∞,(

`π
k
)q/k ∼ Nkm−b+a−1 and

(
uπ

k
)1/k ∼ Mkm−b+a−1 for some positive constants N and M.



A necessary condition for c-Wilf equivalence 9

It follows that the sequence

(
rπ

1+k(m−1),k

)1/k

km−b+a−1 is bounded away from 0 and ∞ as k → ∞,
which is equivalent to the existence of Lπ, Uπ and K.

Upper bound: For each i ∈ [k− 1], let Ti be the a− 1 smallest elements of Di, correspond-
ing to the red rectangles in Figure 3. We remove all relations between elements from
Ti and elements from Pπ

1+k(m−1),S(k,m) \ Ti for all i, to form a new poset Uπ
k with at least

rπ
1+k(m−1),S(k,m) linear extensions. As an example, the Hasse diagram of Uπ

4 is given on
the left of Figure 4.

a− 1 a− 1 a− 1

m− b

m− b

m− b

b− a− 1

b− a− 1

m− a

b− 1
a− 1 a− 1 a− 1

m− b

m− b

m− b

b− a− 1

b− a− 1

m− a

b− 1

Figure 4: The posets Uπ
4 (left) and Lπ

4 (right) of a permutation π ∈ Sm in standard
form with π1 = a and πm = b.

The number of linear extensions of Uπ
k is

uπ
k =

(
1 + k(m− 1)

a− 1, . . . a− 1, 1 + k(m− 1)− (k− 1)(a− 1)

) k−1

∏
i=1

(
i(m− a) + m− b

m− b

)
= χπ

k µπ
k ,

where

χπ
k =

(1 + k(m− 1))!
(a− 1)!k−1(a + k(m− a))!(m− b)!k−1

and

µπ
k =

k−1

∏
i=1

(i(m− a) + 1) · · · (i(m− a) + m− b).

As k→ ∞, Stirling’s formula gives
(
χπ

k
)1/k ∼ αka−1, where α = (m−1)m−1

(a−1)!(m−b)!(m−a)m−aea−1 .
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We can bound µπ
k as follows:

(k− 1)!m−b(m− a)(m−b)(k−1) =
k−1

∏
i=1

(i(m− a))m−b ≤ µπ
k ≤ k!m−b(m− a)(m−b)(k−1),

where the last inequality uses the assumption that a < b. Applying Stirling’s formula

again as k → ∞, we obtain
(
µπ

k
)1/k ∼ βkm−b, where β = (m−a)m−b

em−b . Consequently(
uπ

k
)1/k ∼ αβkm−b+a−1 as desired.

Lower bound: Again we modify the relations between elements of Ti and the rest of the
poset. This time we add relations to force every element in each Ti to be smaller than
the b-th smallest element in L. Let Lπ

k be the resulting poset. As an example, the Hasse
diagram of Lπ

4 is given on the right of Figure 4.
The number of linear extensions Lπ

k is

`π
k =

(
b− 1 + (k− 1)(a− 1)

b− 1, a− 1, a− 1, . . . , a− 1

) k−1

∏
i=1

(
i(m− a) + m− b

m− b

)
.

Again using Stirling’s formula we see that, as k→ ∞,

(`π
k )

1/k ∼ γka−1βkm−b = γβkm−b+a−1

where γ = (a−1)a−1

(a−1)!(m−b)!ea−1 .

Proof of Theorem 3. Let π, τ ∈ Sm be in standard form. We prove the following stronger
version of the contrapositive: if πm − π1 < τm − τ1, then there is an integer K such that
rτ

1+k(m−1),k < rπ
1+k(m−1),k for all k ≥ K. Indeed, since m− τm + τ1 − 1 < m− πm + π1 − 1,

we can take K such that Uτkm−τm+τ1−1 < Lπkm−πm+π1−1 for all k ≥ K. Then, by Lemma 1,

rτ
1+k(m−1),k ≤

(
Uτkm−τm+τ1−1

)k
<
(

Lπkm−πm+π1−1
)k
≤ rπ

1+k(m−1),k

for all k ≥ K. In particular, by Theorem 4, π and τ cannot be strongly c-Wilf equivalent.

4 Super-strong c-Wilf equivalence

We can use the refined cluster numbers to characterize super-strong c-Wilf equivalence
in a similar way to how the cluster method (Theorem 4) characterizes strong c-Wilf
equivalence in terms of regular cluster numbers. One difference, however, is that the
refined version does not immediately lend itself to a generating function identity.



A necessary condition for c-Wilf equivalence 11

Lemma 2. Two permutations π, τ are super-strongly c-Wilf equivalent if and only if rπ
n,S = rτ

n,S
for all n and S.

Proof. The forward direction is clear, since clusters are a particular kind of marked per-
mutations. To prove the converse, let bπ

n,S be the number of σ ∈ Sn with S ⊆ Em(π, σ).
By inclusion-exclusion, π, τ are super-strongly c-Wilf equivalent if and only if bπ

n,S = bτ
n,S

for all n and S, so it suffices to prove this equality.
Fix π ∈ Sm, as well as n and S. Consider a permutation σ ∈ Sn chosen uniformly

at random. We partition S = S1 ∪ · · · ∪ Sq for some q ≥ 1, where each Si satisfies the
following property: if x, y ∈ S with x < y and there is no z ∈ S with x < z < y,
then y − x ∈ Oπ. Additionally, max Si + m − 1 < min Si+1 for all i ∈ [q − 1]. Letting
mi = min Si and Mi = max Si, we claim that

bπ
n,S

n!
=

q

∏
i=1

rπ
Mi−mi+m,Ŝi

(Mi −mi + m)!
, (4.1)

where Ŝi = {i − mi + 1 : i ∈ Si}. To prove Equation (4.1), let Ei be the event Si ⊆
Em(π, σ). Then the event E1 ∪ · · · ∪ Eq is equivalent to S ⊆ Em(π, σ), and so it has
probability bπ

n,S/n!. By construction, the events Ei for i ∈ [q] are mutually independent,

and Ei occurs with probability
rπ

Mi−mi+m,Ŝi
(Mi−mi+m)! .

By hypothesis, the refined cluster numbers coincide for π and τ, and so the right
hand side of Equation (4.1) stays the same when replacing π with τ. It follows that the
the same holds for the left hand side, and so bπ

n,S = bτ
n,S.

Using Lemma 2 and analyzing the cluster posets, one can derive the following gen-
eralization of Theorem 1. We omit the details due to space restrictions.

Theorem 5. If π, τ ∈ Sm with Oπ = Oτ satisfy {π1, . . . , πm−i} = {τ1, . . . , τm−i} and
{πi+1 . . . , πm} = {τi+1, . . . , τm} for all i ∈ Oπ, then π and τ are super-strongly c-Wilf equiv-
alent.

It is important to point out that Conjecture 1 does not extend to super-strong c-Wilf
equivalence, that is, there are permutations that are strongly c-Wilf equivalent but not
super-strongly c-Wilf equivalent. For example, we have computed that a1423

9,{3} = 13, 843 6=
13, 839 = a3241

9,{3}, despite the fact that 1423R = 3241.
However, we have proved that the three equivalence relations that we have defined do

in fact coincide when restricted to non-overlapping permutations. We have two proofs
of the following theorem. The first one uses techniques similar to those in Billey, Burdzy
and Sagan’s work on permutations with a given peak set [1]. The second uses Lemma 1
and some ideas from [4].
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Theorem 6. Let π, τ ∈ Sm be non-overlapping permutations. If π and τ are c-Wilf equivalent
then they are super-strongly c-Wilf equivalent.

Since every permutation is c-Wilf equivalent to its reversal, an immediate conse-
quence of Theorem 6 is that if π is non-overlapping, then π and πR are super-strongly
c-Wilf equivalent. It would be interesting to find a combinatorial proof of this fact, that
is, a bijection from Sn to itself changing occurrences of π in prescribed positions into
occurrences of πR. This is challenging even in simplest case of π = 132.
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